Exam Statistical Genomics 2017/2018

Date: Friday, April 6, 2018
Time: 9:00 - 12:00

Place: BB 5161.0293
Progress code: WISG-09

Rules to follow:
e This is a closed book exam. Consultation of books and notes is not permitted.
e Do not forget to write your name and student number onto each paper sheet.

e There are 4 exercises, and the numbers of points per exercise are indicated within
boxes. You can reach p = 90 points and the exam grade will be computed as follows:

10+p
10

grade :=

e [ wish you success with the completion of the exam!
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Figure 1: The DAG for exercise no. 1.

1. Bayesian networks and directed acyclic graphs.
Consider the directed acyclic graph (DAG) shown in Figure 1.

(a) | 3] Give the ancestor matrix of the graph.

(b) How many neighbour graphs can be reached by the 3 single edge operations?
(¢) |3] Give the CPDAG of the DAG.

(d) How many graphs are in the equivalence class defined by the CPDAG.

)

(e Is there a DAG with the same skeleton but without any v-structures? If so,
give an example. If not, give an explanation why that is impossible.

(f) 3| Give a DAG with the same skeleton but in whose CPDAG the edge F' — E
is directed (compelled).

(2) Give the Markov Blanket of node D.

(h) List all paths (trails) from node A to node F, and indicate for each path
whether it is open or blocked.

(i) List all open paths from node A to node E when conditional on Z = {C}.

(j) In Bayesian networks the joint distribution can be factorized into a prod-
uct of local conditional distributions. Use this factorization to show that
P(A,B,C|D,E,F) = P(A,B,C|D). You can assume that all nodes are dis-
crete binary variables.



2. Structure MCMC sampling.

Consider a Bayesian network with n = 2 nodes X; and X,. There are then three
possible directed acyclic graphs (DAGs): Gi: ‘X; — Xo', Ga: ‘X; + Xy, and
the empty graph without edges Gs: ‘X; Xy'. The structure MCMC sampling
scheme defines a Markov Chain whose state space S is the set of those three DAGs:
S = {G1, G2, Gs} The graph prior distribution is: P(G1) = 0.4, P(G3) = 0.2, and
P(G3) = 0.4. The marginal likelihoods are: P(data|G1) = 20a, P(data|Gz) = 20a
and P(data|Gs) = a, where a € RT.

(a) Compute the 3-by-3 transition matrix 7" of the Markov Chain when only
single edge additions and deletions are implemented (no single edge reversals).

(b) Compute the 3-by-3 transition matrix 7" of the Markov Chain when all
three single edge operations (additions, deletions and reversals) are used.

(c) | 5] Give the stationary distribution(s) of the two Markov chains in (a) and (b).

3. Gaussian Bayesian networks.
Consider three random variables X;, X5, and X3, which are in the following regres-
sion relationships to each other:

X1 = 2 + €
Xg = (—1) . X1 + €9
X3 = 2. Xg + €3
where €, €9, and €3 are independently standard Gaussian N (0, 1) distributed random

variables. This can be interpreted as a Gaussian Bayesian network with the directed
acyclic graph: ‘X; — Xy — X3'.

(a) The 3-dimensional random vector X := (X1, X3, X3)7 is multivariate Gaussian
distributed. Give its expectation vector and its covariance matrix.

(b) The graph is equivalent to the graph ‘X; < X, < X3’. Give the regression
equations for the latter graph.

HINTS: For part (a), recall that for random variables X, Y and Z:

e Cov(X,Y)=Cou(Y,X)

o Cov(X,X)=Var(X)

o Cou(X,)Y+Z)=Cov(X,Y)+ Cov(X,Z)
(

o Cov(e,X)=0forceR

For part (b), recall that for a vector (Xi,...,X,)? with a multivariate Gaussian
distribution:

Cov Xi,Xj
o B[Xi|X; = a] = B[X]] + Gl - (a — ELX;))

Cov Xi,Xj 2
[ ] V(lT(XZ’XJ == CL) == (1 - WM) . V(l’f’(XZ)



4. Hidden Markov model.
Consider a set of six binary random Mariables {C}, Cy, Cs, Ey, Es, E3} and the fol-
lowing probabilistic relationships:

p(Ci=1) = 05
p(C1=2) = 05

and for t = 2, 3:
p(Cr =1|Ci1 = 1) 0.8
p(C’t = 2’013_1 = 1) = 0.2
p(Ct = 1’075,1 = 2) = 0.3
p(Ct = 2|Ct_1 = 2) = 0.7
Moreover, for t = 1,2, 3:

(a) Visualize the relationships between the six variables through a directed acyclic
graph (DAG), and factorize the joint distribution into a product of local con-
ditional distributions.

(b) Compute the following two conditional probabilities:
.P(E2:1|01:1,02:1703:1,E1:17E3:]_>
.P(E2:1|01:1,03:1,E1:1,E3:1)



SOLUTION EXERCISE 1:
For notational convenience, identify: A=1, B=2,C =3, D=4, F =5, and F = 6.

Part (a): Ancestor matrix is:

O OO == O
O OO = OO
S OO O oo
OO O = O
OO = = = O
O = === O

Part (b):
e By edge deletions: 8
e By edge reversals: 5
e By edge additions: 10

Answer: By single edge operations 23 neighbour graphs can be reached.

Part (c): The CPDAG is shown in Figure 2.

Figure 2: Exercise 1(c): CPDAG. Reversible edges are represented as bi-directional.

Part (d): There could be up to 2* = 16 graphs in the equivalence class, as 4 edges in the
CPDAG are reversible. However, only 12 of them actually belong to the same equivalence
class. The 4 disqualified graphs have no additional v-structures, but invalid cycles.



Part (e): Yes, there is one. See Figure 3.

Figure 3: Exercise 1(e): A DAG with the same skeleton but without v-structures.

Part (f): Such a DAG can be found in Figure 4.

? o

.

Figure 4: Exercise 1(f): A DAG with the same skeleton and in whose CPDAG the
edge from F to F is directed.

Part (g): MB(D) = {A, B,C,E, F}, i.e. the 5 other nodes.

Part (h): There are 8 paths between A and E, and they are all blocked:
e A— B+ D+« FE, blocked
e A—» B+ D+ F — FE, blocked

e A~ B — (C <+ D+ FE, blocked

A— B —C<+ D+ F — FE, blocked
e A—(C+ B+ D+ FE, blocked

e A—>(C+ B+ D+ F — FE, blocked
e A— C+ D+ FE, blocked

e A~ C+ D+ F — F, blocked



Part (i): Conditional on Z = {C}, all the 8 blocked paths become open paths.
Recall that a collider can be ‘opened’ by conditioning on the node itself or on one of its
descendants. Here, C' is a descendant of B.

e A— B+ D+ E, open

e A B+ D+ F — FE, open

e A—»B—(C+ D+ FE, open

e A—-B—-C+ D+ F— FE, open
e A~ C+ B+ D+ FE,open

e A—>C+ B+ D+ F — FE, open
e A—(C+ D+ FE, open

e A—-C+«+ D+ F — FE, open

Part (j): For the given graph we have:
P(A,B,C,D,E,F)=P(A)-P(B|A,D)-P(C|A,B,D)-P(D|E,F)-P(E|F)-P(F)
And the marginal distribution of D, F, and F is:
P(D,E,F) ZZZP —a,B=b,C=¢,D,E,F)
=> Y > P(A=a)-P(B=blA=a,D) P(C :cyA:a,B:b,D). P(D|E,F)- P(E|F)- P(F)
a b e

— P(D|E,F) - P(E|F) - ZZZP B=blA=a,D)-P(C =c|A=a,B=b,D)
— P(D|E,F) - P(E|F) - ZP a)Y P(B=blA=0a,D)) P(C=clA=a,B=bD)

— P(D|E, F) - P(E|F) - P(F)

It follows:

P(A,B,C,D,E, F)
P(D,E,F)

P(A,B,C|D,E,F) = = P(A) - P(B|A, D) - P(C|A, B, D)

And the expression on the right does not depend on E and F'.



SOLUTION EXERCISE 2:
For notational convenience, identify: G, with 1, G4 with 2, and Gj3 with 3.

The proposal probabilities can then be arranged in a 3-by-3 matrix Q. The element Q; ; is
the probability for proposing a move from Gj to Gj. The Metropolis-Hastings acceptance
probability A, ; for the move from G; to Gj is given by:

p(data|Gy) p(G;) Qayi}
p(data|Gs) p(Gi) Qi

Part (a) When only single edge additions and delitions are allowed, we have:

A, ;= A(G; — Gj) = min{l,

0 0 1
Q=10 0 1
0.5 05 0
and the four required acceptance probabilities are:
0.4 0.5 1
A = min{l,— - — - —}=—=10.025
o = min{l o501 T T 1
, 0.4 0.5 1
A23 = mln{l,%ﬁT}———OOL’)
20a 0.4 1
A = min{l, — - — - —}=
s = mindl == 5o s)
, 20a 0.2 1
Asy, = mm{l,—-oj-ﬁ}—l

For ¢ # j we have the transition probabilities: T, ; = Q,; - A, ;, and for the diagonal
elements we then compute: T;; =1—> T,; (i = 1,2,3). This way, we compute the
J#i
elements of the transition matrix T:

0975 0 0.025

T = 0 095 0.05
0.5 0.5 0
(b) When all three single edge operations are allowed, we have:
0 05 05
Q=105 0 05
0.5 05 0

so that the Hastings-ratio is always equal to 1.
The six required acceptance probabilities are then:

a 04

A3 = min{l, %00 8_3 =0.05
. a 0.

Ay; = min{l, gg—a : 8—2} =0.1

Az = min{l, Ta =1

Aso = min{l, 22_@ : 8—2 =1

20a 0.2

A, = min{l, %8_a . 8_3 =0.5
, a 0.

Ay, = min{l, 00 0—2} =1



Again we use for 7 7é ] Ti,j = Qi,j . Alv] And for ¢ = 1, 2, 3: Ti,i =1- E Tz,j
J#i
The transition matrix T is then:

0.725 0.25 0.025
T=1 05 045 0.05
0.5 0.5 0

(c) For both Markov Chains it is guaranteed that they will have the posterior distribution
as stationary distribution. Therefore, we have to compute the posterior distribution.

Normalization constant:

P(data) = Zp(data|Gi)-p(Gi)

= 20a6-04+20a-024+a-04
= 12.4a

For the posterior probabilities we use:

p(data|G;) - p(Gi)

P(G;ldata) p(data)

This way, we get the same stationary distribution for both Markov Chains, namely:

20a - 0.4 8
P(Gql|data) = Bia — 104"~ 0.645

20a - 0.2 4
P(Ggzldata) = ode =~ 1247 0.323

a-0.4 0.4
P(Gal|data) = Sda 1947 0.032



SOLUTION EXERCISE 3:

Part (a) Compute the marginal distributions:

® X1 =2+ €1 1rnphes that X1 ~ N(Z, 1)

o Xy = —Xj+ey implies that Xy ~ N(—2,2), as X; and €, have independent Gaussian

distributions.

e X3 = 2X,+e€3 implies that X3 ~ N(—4,9), as X5 and €3 have independent Gaussian

distributions.

The expectation vector is (2, —2, —4)T. The diagonal elements of the covariance matrix

are: Y11 = 1, ¥o9 = 2, and X33 = 9. The non-diagonal elements of the covariance matrix
are the covariances: ¥, ; = Cov(X;, X;) (i # j).

212

Cov(X1,X3) = Cov(Xy, — X1 + €) = Cov(2 4 €1, —2 — €1 + €3) = Cov(ey, —€)

- 1
Y15 = Cov(Xy,X;3)=Cov(X1,2Xs+ €3) = Cov(X1,2(—X; + €2) + €3)
= Cov(X1,—2X1 + 26+ €3) = Cov(X1, —2X;) = —2Var(X,)
- 2
Yo3 = Cov(Xs, X3) = Cov(X2,2X5 + €3) = Cov(Xs,2X,) = 2Var(Xy)
4

Altogether, this yields

X, 2 1 -1 -2
Xo | ~N{||=2],[-1 2 4
X, 4 2 4 9

Part (b)
e The marginal distribution of X3 is: X3 ~ N(—4,9), we can write that as:
X3 =—-4+¢6 where €~ N(0,9)

e The conditional distribution of X5 given X3 = a, is:

4 16 2 4 2
Xol(Xs=a)~N| -2+ = 4),(1—=—=)-2) =N(—=+=a,=
Thus, we have:

2 4 2
X2:_§_|_§X3+€2 where €~2NN(O7§)

10



e The conditional distribution of X; given X5 = a, is:

X41|(Xs = a) NN(2+%1(a+2),(1—%)-1> :N(l—%a,%)

Thus, we have:

1 1
X1 =1- §X2 + 51 where 6~1 ~ N(O, 5)

Summary: Regression relationships for DAG ‘X5 — Xy — X

X3 = —4+€~3
2 4 -
X2 = —§+§X3+€2
1
Xy = 1-5X+4

where € ~ N(0,9), & ~ N(0,2), and & ~ N(0,3).

11



SOLUTION EXERCISE 4:

Part (a) For the DAG see Figure 5. The implied factorization is

P(Cl7 C27C37 E17E27E3) = P<Cl) ' P(C2|Cl) : P(C3|C2> ' P(E1|Cl> ' P(E2|C2) ' P<E3|C3)

Ve

Figure 5: Exercise 4(a): Graphical representation of the DAG.

-

Part (b)

e [rom the DAG it can be seen:
P(Ey,=1|Ci=1,Co=1,C5=1,5,=1,E;=1) = P(E, = 1|C, = 1) = 0.1

e [rom the DAG it can be seen:
P(EQI 1‘01 - 1,03: 1,E1 == 1,E3: 1) == P(EQI 1’01 = 1,03: 1)

and then

2
P(Ey=1/C; =1,C5=1) = Y P(Ey=1,C,=i|Cy =1,C5=1)

i=1

2
= Y P(E,=1C,=1,Co=1i,C3=1)- P(C, =i|C; =1,C5 = 1)

i=1

2
= Y P(BEy=1|Cy=1)- P(C, =i|C; =1,C5 = 1)

=1

_ o1 0.8-0.8 . 0.2-0.3
77 08-0.8+0.2-03 7 0.8-0.84+0.2-0.3
0.64 0.06
= 01-——+09 - — =~ 0.169
0.7 - 0.7

In the last step we have used:

12



P(Cy=14,Ch =1,C5 =1)
P(Cy=1,C3 = 1)
P(Cy = 1|Cy = i) - P(Cy = i|Chy = 1) - P(Cy = 1)
S P(Ca=4,Cr=1,C5=1)
P(Cy = 1|Cy = i) - P(Cy = i|Cy = 1) - P(Cy = 1)

P(CQZZ|01 :1,03:1) ==

> POy =1]Cy = j) - P(Ce = j|C = 1) - P(C1 = 1)
Y P(Cy=1]Ch = j) - P(Cy = j|Cy = 1)
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