
Exam Statistical Genomics 2017/2018

Date: Friday, April 6, 2018
Time: 9:00 - 12:00
Place: BB 5161.0293
Progress code: WISG-09

Rules to follow:

• This is a closed book exam. Consultation of books and notes is not permitted.

• Do not forget to write your name and student number onto each paper sheet.

• There are 4 exercises, and the numbers of points per exercise are indicated within
boxes. You can reach p = 90 points and the exam grade will be computed as follows:

grade :=
10 + p

10

• I wish you success with the completion of the exam!

EXAM STARTS ON NEXT PAGE
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Figure 1: The DAG for exercise no. 1.

1. Bayesian networks and directed acyclic graphs. 30
Consider the directed acyclic graph (DAG) shown in Figure 1.

(a) 3 Give the ancestor matrix of the graph.

(b) 3 How many neighbour graphs can be reached by the 3 single edge operations?

(c) 3 Give the CPDAG of the DAG.

(d) 3 How many graphs are in the equivalence class defined by the CPDAG.

(e) 3 Is there a DAG with the same skeleton but without any v-structures? If so,
give an example. If not, give an explanation why that is impossible.

(f) 3 Give a DAG with the same skeleton but in whose CPDAG the edge F → E
is directed (compelled).

(g) 3 Give the Markov Blanket of node D.

(h) 3 List all paths (trails) from node A to node E, and indicate for each path
whether it is open or blocked.

(i) 3 List all open paths from node A to node E when conditional on Z = {C}.

(j) 3 In Bayesian networks the joint distribution can be factorized into a prod-
uct of local conditional distributions. Use this factorization to show that
P (A,B,C|D,E, F ) = P (A,B,C|D). You can assume that all nodes are dis-
crete binary variables.
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2. Structure MCMC sampling. 25
Consider a Bayesian network with n = 2 nodes X1 and X2. There are then three
possible directed acyclic graphs (DAGs): G1: ‘X1 → X2’, G2: ‘X1 ← X2’, and
the empty graph without edges G3: ‘X1 X2’. The structure MCMC sampling
scheme defines a Markov Chain whose state space S is the set of those three DAGs:
S = {G1,G2,G3} The graph prior distribution is: P (G1) = 0.4, P (G2) = 0.2, and
P (G3) = 0.4. The marginal likelihoods are: P (data|G1) = 20a, P (data|G2) = 20a
and P (data|G3) = a, where a ∈ R+.

(a) 10 Compute the 3-by-3 transition matrix T of the Markov Chain when only
single edge additions and deletions are implemented (no single edge reversals).

(b) 10 Compute the 3-by-3 transition matrix T of the Markov Chain when all
three single edge operations (additions, deletions and reversals) are used.

(c) 5 Give the stationary distribution(s) of the two Markov chains in (a) and (b).

3. Gaussian Bayesian networks. 20
Consider three random variables X1, X2, and X3, which are in the following regres-
sion relationships to each other:

X1 = 2 + ε1

X2 = (−1) ·X1 + ε2

X3 = 2 ·X2 + ε3

where ε1, ε2, and ε3 are independently standard GaussianN(0, 1) distributed random
variables. This can be interpreted as a Gaussian Bayesian network with the directed
acyclic graph: ‘X1 → X2 → X3’.

(a) The 3-dimensional random vector X := (X1, X2, X3)
T is multivariate Gaussian

distributed. Give its expectation vector and its covariance matrix. 10

(b) The graph is equivalent to the graph ‘X1 ← X2 ← X3’. Give the regression
equations for the latter graph. 10

HINTS: For part (a), recall that for random variables X, Y and Z:

• Cov(X, Y ) = Cov(Y,X)

• Cov(X,X) = V ar(X)

• Cov(X, Y + Z) = Cov(X, Y ) + Cov(X,Z)

• Cov(c,X) = 0 for c ∈ R

For part (b), recall that for a vector (X1, . . . , Xn)T with a multivariate Gaussian
distribution:

• E[Xi|Xj = a] = E[Xi] +
Cov(Xi,Xj)

V ar(Xj)
· (a− E[Xj])

• V ar(Xi|Xj = a) =
(

1− Cov(Xi,Xj)
2

V ar(Xi)·V ar(Xj)

)
· V ar(Xi)
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4. Hidden Markov model. 15
Consider a set of six binary random Mariables {C1, C2, C3, E1, E2, E3} and the fol-
lowing probabilistic relationships:

p(C1 = 1) = 0.5

p(C1 = 2) = 0.5

and for t = 2, 3:

p(Ct = 1|Ct−1 = 1) = 0.8

p(Ct = 2|Ct−1 = 1) = 0.2

p(Ct = 1|Ct−1 = 2) = 0.3

p(Ct = 2|Ct−1 = 2) = 0.7

Moreover, for t = 1, 2, 3:

P (Et = 1|Ct = 1) = 0.1

P (Et = 2|Ct = 1) = 0.9

P (Et = 1|Ct = 2) = 0.9

P (Et = 2|Ct = 2) = 0.1

(a) Visualize the relationships between the six variables through a directed acyclic
graph (DAG), and factorize the joint distribution into a product of local con-
ditional distributions. 5

(b) Compute the following two conditional probabilities: 10

• P (E2 = 1|C1 = 1, C2 = 1, C3 = 1, E1 = 1, E3 = 1)

• P (E2 = 1|C1 = 1, C3 = 1, E1 = 1, E3 = 1)
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SOLUTION EXERCISE 1:

For notational convenience, identify: A = 1, B = 2, C = 3, D = 4, E = 5, and F = 6.

Part (a): Ancestor matrix is:

A =


0 0 0 0 0 0
1 0 0 1 1 1
1 1 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0


Part (b):

• By edge deletions: 8

• By edge reversals: 5

• By edge additions: 10

Answer: By single edge operations 23 neighbour graphs can be reached.

Part (c): The CPDAG is shown in Figure 2.
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Figure 2: Exercise 1(c): CPDAG. Reversible edges are represented as bi-directional.

Part (d): There could be up to 24 = 16 graphs in the equivalence class, as 4 edges in the
CPDAG are reversible. However, only 12 of them actually belong to the same equivalence
class. The 4 disqualified graphs have no additional v-structures, but invalid cycles.
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Part (e): Yes, there is one. See Figure 3.
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Figure 3: Exercise 1(e): A DAG with the same skeleton but without v-structures.

Part (f): Such a DAG can be found in Figure 4.
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Figure 4: Exercise 1(f): A DAG with the same skeleton and in whose CPDAG the
edge from F to E is directed.

Part (g): MB(D) = {A,B,C,E, F}, i.e. the 5 other nodes.

Part (h): There are 8 paths between A and E, and they are all blocked:

• A→ B ← D ← E, blocked

• A→ B ← D ← F → E, blocked

• A→ B → C ← D ← E, blocked

• A→ B → C ← D ← F → E, blocked

• A→ C ← B ← D ← E, blocked

• A→ C ← B ← D ← F → E, blocked

• A→ C ← D ← E, blocked

• A→ C ← D ← F → E, blocked
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Part (i): Conditional on Z = {C}, all the 8 blocked paths become open paths.
Recall that a collider can be ‘opened’ by conditioning on the node itself or on one of its
descendants. Here, C is a descendant of B.

• A→ B ← D ← E, open

• A→ B ← D ← F → E, open

• A→ B → C ← D ← E, open

• A→ B → C ← D ← F → E, open

• A→ C ← B ← D ← E, open

• A→ C ← B ← D ← F → E, open

• A→ C ← D ← E, open

• A→ C ← D ← F → E, open

Part (j): For the given graph we have:

P (A,B,C,D,E, F ) = P (A) · P (B|A,D) · P (C|A,B,D) · P (D|E,F ) · P (E|F ) · P (F )

And the marginal distribution of D, E, and F is:

P (D,E, F ) =
∑
a

∑
b

∑
c

P (A = a,B = b, C = c,D,E, F )

=
∑
a

∑
b

∑
c

P (A = a) · P (B = b|A = a,D) · P (C = c|A = a,B = b,D) · P (D|E,F ) · P (E|F ) · P (F )

= P (D|E,F ) · P (E|F ) · P (F )
∑
a

∑
b

∑
c

P (A = a) · P (B = b|A = a,D) · P (C = c|A = a,B = b,D)

= P (D|E,F ) · P (E|F ) · P (F )
∑
a

P (A = a)
∑
b

P (B = b|A = a,D)
∑
c

P (C = c|A = a,B = b,D)

= P (D|E,F ) · P (E|F ) · P (F )

It follows:

P (A,B,C|D,E, F ) =
P (A,B,C,D,E, F )

P (D,E, F )
= P (A) · P (B|A,D) · P (C|A,B,D)

And the expression on the right does not depend on E and F .
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SOLUTION EXERCISE 2:

For notational convenience, identify: G1 with 1, G2 with 2, and G3 with 3.

The proposal probabilities can then be arranged in a 3-by-3 matrix Q. The element Qi,j is
the probability for proposing a move from Gi to Gj. The Metropolis-Hastings acceptance
probability Ai,j for the move from Gi to Gj is given by:

Ai,j := A(Gi → Gj) = min{1, p(data|Gj)

p(data|Gi)
· p(Gj)

p(Gi)
· Qj,i

Qi,j

}

Part (a) When only single edge additions and delitions are allowed, we have:

Q =

 0 0 1
0 0 1

0.5 0.5 0


and the four required acceptance probabilities are:

A1,3 = min{1, a

20a
· 0.4

0.4
· 0.5

1
} =

1

40
= 0.025

A2,3 = min{1, a

20a
· 0.4

0.2
· 0.5

1
} =

1

20
= 0.05

A3,1 = min{1, 20a

a
· 0.4

0.4
· 1

0.5
} = 1

A3,2 = min{1, 20a

a
· 0.2

0.4
· 1

0.5
} = 1

For i 6= j we have the transition probabilities: Ti,j = Qi,j ·Ai,j, and for the diagonal
elements we then compute: Ti,i = 1 −

∑
j 6=i

Ti,j (i = 1, 2, 3). This way, we compute the

elements of the transition matrix T:

T =

0.975 0 0.025
0 0.95 0.05

0.5 0.5 0


(b) When all three single edge operations are allowed, we have:

Q =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0


so that the Hastings-ratio is always equal to 1.
The six required acceptance probabilities are then:

A1,3 = min{1, a

20a
· 0.4

0.4
} = 0.05

A2,3 = min{1, a

20a
· 0.4

0.2
} = 0.1

A3,1 = min{1, 20a

a
· 0.4

0.4
} = 1

A3,2 = min{1, 20a

a
· 0.2

0.4
} = 1

A1,2 = min{1, 20a

20a
· 0.2

0.4
} = 0.5

A2,1 = min{1, 20a

20a
· 0.4

0.2
} = 1
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Again we use for i 6= j: Ti,j = Qi,j ·Ai,j. And for i = 1, 2, 3: Ti,i = 1−
∑
j 6=i

Ti,j.

The transition matrix T is then:

T =

0.725 0.25 0.025
0.5 0.45 0.05
0.5 0.5 0


(c) For both Markov Chains it is guaranteed that they will have the posterior distribution
as stationary distribution. Therefore, we have to compute the posterior distribution.

Normalization constant:

P (data) =
3∑

i=1

p(data|Gi) · p(Gi)

= 20a · 0.4 + 20a · 0.2 + a · 0.4
= 12.4a

For the posterior probabilities we use:

P (Gi|data) =
p(data|Gi) · p(Gi)

p(data)

This way, we get the same stationary distribution for both Markov Chains, namely:

P (G1|data) =
20a · 0.4

12.4a
=

8

12.4
≈ 0.645

P (G2|data) =
20a · 0.2

12.4a
=

4

12.4
≈ 0.323

P (G2|data) =
a · 0.4
12.4a

=
0.4

12.4
≈ 0.032
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SOLUTION EXERCISE 3:

Part (a) Compute the marginal distributions:

• X1 = 2 + ε1 implies that X1 ∼ N(2, 1)

• X2 = −X1+ε2 implies that X2 ∼ N(−2, 2), as X1 and ε2 have independent Gaussian
distributions.

• X3 = 2X2+ε3 implies that X3 ∼ N(−4, 9), as X2 and ε3 have independent Gaussian
distributions.

The expectation vector is (2,−2,−4)T . The diagonal elements of the covariance matrix
are: Σ1,1 = 1, Σ2,2 = 2, and Σ3,3 = 9. The non-diagonal elements of the covariance matrix
are the covariances: Σi,j = Cov(Xi, Xj) (i 6= j).

Σ1,2 = Cov(X1, X2) = Cov(X1,−X1 + ε2) = Cov(2 + ε1,−2− ε1 + ε2) = Cov(ε1,−ε1)
= −1

Σ1,3 = Cov(X1, X3) = Cov(X1, 2X2 + ε3) = Cov(X1, 2(−X1 + ε2) + ε3)

= Cov(X1,−2X1 + 2ε2 + ε3) = Cov(X1,−2X1) = −2V ar(X1)

= −2

Σ2,3 = Cov(X2, X3) = Cov(X2, 2X2 + ε3) = Cov(X2, 2X2) = 2V ar(X2)

= 4

Altogether, this yieldsX1

X2

X3

 ∼ N

 2
−2
−4

 ,

 1 −1 −2
−1 2 4
−2 4 9



Part (b)

• The marginal distribution of X3 is: X3 ∼ N(−4, 9), we can write that as:

X3 = −4 + ε̃3 where ε̃3 ∼ N(0, 9)

• The conditional distribution of X2 given X3 = a, is:

X2|(X3 = a) ∼ N

(
−2 +

4

9
(a+ 4), (1− 16

2 · 9
) · 2

)
= N(−2

9
+

4

9
a,

2

9
)

Thus, we have:

X2 = −2

9
+

4

9
X3 + ε̃2 where ε̃2 ∼ N(0,

2

9
)

10



• The conditional distribution of X1 given X2 = a, is:

X1|(X2 = a) ∼ N

(
2 +
−1

2
(a+ 2), (1− 1

1 · 2
) · 1

)
= N(1− 1

2
a,

1

2
)

Thus, we have:

X1 = 1− 1

2
X2 + ε̃1 where ε̃1 ∼ N(0,

1

2
)

Summary: Regression relationships for DAG ‘X3 → X2 → X1’:

X3 = −4 + ε̃3

X2 = −2

9
+

4

9
X3 + ε̃2

X1 = 1− 1

2
X2 + ε̃1

where ε̃3 ∼ N(0, 9), ε̃2 ∼ N(0, 2
9
), and ε̃1 ∼ N(0, 1

2
).
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SOLUTION EXERCISE 4:

Part (a) For the DAG see Figure 5. The implied factorization is

P (C1, C2, C3, E1, E2, E3) = P (C1) · P (C2|C1) · P (C3|C2) · P (E1|C1) · P (E2|C2) · P (E3|C3)

C1 C2 C3

E1 E2 E3

1

Figure 5: Exercise 4(a): Graphical representation of the DAG.

Part (b)

• From the DAG it can be seen:
P (E2 = 1|C1 = 1, C2 = 1, C3 = 1, E1 = 1, E3 = 1) = P (E2 = 1|C2 = 1) = 0.1

• From the DAG it can be seen:

P (E2 = 1|C1 = 1, C3 = 1, E1 = 1, E3 = 1) = P (E2 = 1|C1 = 1, C3 = 1)

and then

P (E2 = 1|C1 = 1, C3 = 1) =
2∑

i=1

P (E2 = 1, C2 = i|C1 = 1, C3 = 1)

=
2∑

i=1

P (E2 = 1|C1 = 1, C2 = i, C3 = 1) · P (C2 = i|C1 = 1, C3 = 1)

=
2∑

i=1

P (E2 = 1|C2 = i) · P (C2 = i|C1 = 1, C3 = 1)

= 0.1 · 0.8 · 0.8
0.8 · 0.8 + 0.2 · 0.3

+ 0.9 · 0.2 · 0.3
0.8 · 0.8 + 0.2 · 0.3

= 0.1 · 0.64

0.7
+ 0.9 · 0.06

0.7
≈ 0.169

In the last step we have used:
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P (C2 = i|C1 = 1, C3 = 1) =
P (C2 = i, C1 = 1, C3 = 1)

P (C1 = 1, C3 = 1)

=
P (C3 = 1|C2 = i) · P (C2 = i|C1 = 1) · P (C1 = 1)∑2

j=1 P (C2 = j, C1 = 1, C3 = 1)

=
P (C3 = 1|C2 = i) · P (C2 = i|C1 = 1) · P (C1 = 1)∑2
j=1 P (C3 = 1|C2 = j) · P (C2 = j|C1 = 1) · P (C1 = 1)

=
P (C3 = 1|C2 = i) · P (C2 = i|C1 = 1)∑2
j=1 P (C3 = 1|C2 = j) · P (C2 = j|C1 = 1)
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