Exam Statistical Genomics 2017/2018

Date: Friday, April 6, 2018
Time: 9:00-12:00
Place: BB 5161.0293
Progress code: WISG-09

Rules to follow:

- This is a closed book exam. Consultation of books and notes is not permitted.
- Do not forget to write your name and student number onto each paper sheet.
- There are 4 exercises, and the numbers of points per exercise are indicated within boxes. You can reach $p=90$ points and the exam grade will be computed as follows:

$$
\text { grade }:=\frac{10+p}{10}
$$

- I wish you success with the completion of the exam!

Figure 1: The DAG for exercise no. 1.

1. Bayesian networks and directed acyclic graphs. 30

Consider the directed acyclic graph (DAG) shown in Figure 1.
(a) 3 Give the ancestor matrix of the graph.
(b) 3 How many neighbour graphs can be reached by the 3 single edge operations?
(c) 3 Give the CPDAG of the DAG.
(d) 3 How many graphs are in the equivalence class defined by the CPDAG.
(e) 3 Is there a DAG with the same skeleton but without any v-structures? If so, give an example. If not, give an explanation why that is impossible.
(f) 3 Give a DAG with the same skeleton but in whose CPDAG the edge $F \rightarrow E$ is directed (compelled).
(g) 3 Give the Markov Blanket of node D.
(h) 3 List all paths (trails) from node A to node E, and indicate for each path whether it is open or blocked.
(i) 3 List all open paths from node A to node E when conditional on $Z=\{C\}$.
(j) 3 In Bayesian networks the joint distribution can be factorized into a product of local conditional distributions. Use this factorization to show that $P(A, B, C \mid D, E, F)=P(A, B, C \mid D)$. You can assume that all nodes are discrete binary variables.
2. Structure MCMC sampling. 25

Consider a Bayesian network with $n=2$ nodes X_{1} and X_{2}. There are then three possible directed acyclic graphs (DAGs): $\mathbf{G}_{1}: ~ ' ~ X_{1} \rightarrow X_{2}$ ', \mathbf{G}_{2} : ' $X_{1} \leftarrow X_{2}$ ', and the empty graph without edges \mathbf{G}_{3} : ' $X_{1} \quad X_{2}$ '. The structure MCMC sampling scheme defines a Markov Chain whose state space S is the set of those three DAGs: $S=\left\{\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \mathbf{G}_{\mathbf{3}}\right\}$ The graph prior distribution is: $P\left(\mathbf{G}_{\mathbf{1}}\right)=0.4, P\left(\mathbf{G}_{\mathbf{2}}\right)=0.2$, and $P\left(\mathbf{G}_{\mathbf{3}}\right)=0.4$. The marginal likelihoods are: $P\left(d a t a \mid \mathbf{G}_{\mathbf{1}}\right)=20 a, P\left(d a t a \mid \mathbf{G}_{\mathbf{2}}\right)=20 a$ and $P\left(\right.$ data $\left.\mid \mathbf{G}_{\mathbf{3}}\right)=a$, where $a \in \mathbb{R}^{+}$.
(a) 10 Compute the 3 -by- 3 transition matrix T of the Markov Chain when only single edge additions and deletions are implemented (no single edge reversals).
(b) 10 Compute the 3-by-3 transition matrix T of the Markov Chain when all three single edge operations (additions, deletions and reversals) are used.
(c) 5 Give the stationary distribution(s) of the two Markov chains in (a) and (b).
3. Gaussian Bayesian networks. 20

Consider three random variables X_{1}, X_{2}, and X_{3}, which are in the following regression relationships to each other:

$$
\begin{aligned}
& X_{1}=2+\epsilon_{1} \\
& X_{2}=(-1) \cdot X_{1}+\epsilon_{2} \\
& X_{3}=2 \cdot X_{2}+\epsilon_{3}
\end{aligned}
$$

where $\epsilon_{1}, \epsilon_{2}$, and ϵ_{3} are independently standard Gaussian $N(0,1)$ distributed random variables. This can be interpreted as a Gaussian Bayesian network with the directed acyclic graph: ' $X_{1} \rightarrow X_{2} \rightarrow X_{3}$ '.
(a) The 3-dimensional random vector $\mathbf{X}:=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ is multivariate Gaussian distributed. Give its expectation vector and its covariance matrix. 10
(b) The graph is equivalent to the graph ' $X_{1} \leftarrow X_{2} \leftarrow X_{3}$ '. Give the regression equations for the latter graph. 10

HINTS: For part (a), recall that for random variables X, Y and Z :

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
- $\operatorname{Cov}(c, X)=0$ for $c \in \mathbb{R}$

For part (b), recall that for a vector $\left(X_{1}, \ldots, X_{n}\right)^{T}$ with a multivariate Gaussian distribution:

- $E\left[X_{i} \mid X_{j}=a\right]=E\left[X_{i}\right]+\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\operatorname{Var}\left(X_{j}\right)} \cdot\left(a-E\left[X_{j}\right]\right)$
- $\operatorname{Var}\left(X_{i} \mid X_{j}=a\right)=\left(1-\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)^{2}}{\operatorname{Var}\left(X_{i}\right) \cdot \operatorname{Var}\left(X_{j}\right)}\right) \cdot \operatorname{Var}\left(X_{i}\right)$

4. Hidden Markov model. 15

Consider a set of six binary random Mariables $\left\{C_{1}, C_{2}, C_{3}, E_{1}, E_{2}, E_{3}\right\}$ and the following probabilistic relationships:

$$
\begin{aligned}
& p\left(C_{1}=1\right)=0.5 \\
& p\left(C_{1}=2\right)=0.5
\end{aligned}
$$

and for $t=2,3$:

$$
\begin{array}{r}
p\left(C_{t}=1 \mid C_{t-1}=1\right)=0.8 \\
p\left(C_{t}=2 \mid C_{t-1}=1\right)=0.2 \\
p\left(C_{t}=1 \mid C_{t-1}=2\right)=0.3 \\
p\left(C_{t}=2 \mid C_{t-1}=2\right)=0.7
\end{array}
$$

Moreover, for $t=1,2,3$:

$$
\begin{aligned}
& P\left(E_{t}=1 \mid C_{t}=1\right)=0.1 \\
& P\left(E_{t}=2 \mid C_{t}=1\right)=0.9 \\
& P\left(E_{t}=1 \mid C_{t}=2\right)=0.9 \\
& P\left(E_{t}=2 \mid C_{t}=2\right)=0.1
\end{aligned}
$$

(a) Visualize the relationships between the six variables through a directed acyclic graph (DAG), and factorize the joint distribution into a product of local conditional distributions. 5
(b) Compute the following two conditional probabilities: 10

- $P\left(E_{2}=1 \mid C_{1}=1, C_{2}=1, C_{3}=1, E_{1}=1, E_{3}=1\right)$
- $P\left(E_{2}=1 \mid C_{1}=1, C_{3}=1, E_{1}=1, E_{3}=1\right)$

SOLUTION EXERCISE 1:

For notational convenience, identify: $A=1, B=2, C=3, D=4, E=5$, and $F=6$.
Part (a): Ancestor matrix is:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Part (b):

- By edge deletions: 8
- By edge reversals: 5
- By edge additions: 10

Answer: By single edge operations 23 neighbour graphs can be reached.

Part (c): The CPDAG is shown in Figure 2.

Figure 2: Exercise 1(c): CPDAG. Reversible edges are represented as bi-directional.

Part (d): There could be up to $2^{4}=16$ graphs in the equivalence class, as 4 edges in the CPDAG are reversible. However, only 12 of them actually belong to the same equivalence class. The 4 disqualified graphs have no additional v-structures, but invalid cycles.

Part (e): Yes, there is one. See Figure 3.

Figure 3: Exercise 1(e): A DAG with the same skeleton but without v-structures.
Part (f): Such a DAG can be found in Figure 4.

Figure 4: Exercise 1(f): A DAG with the same skeleton and in whose CPDAG the edge from F to E is directed.

Part (g): $\mathrm{MB}(D)=\{A, B, C, E, F\}$, i.e. the 5 other nodes.
Part (h): There are 8 paths between A and E, and they are all blocked:

- $A \rightarrow B \leftarrow D \leftarrow E$, blocked
- $A \rightarrow B \leftarrow D \leftarrow F \rightarrow E$, blocked
- $A \rightarrow B \rightarrow C \leftarrow D \leftarrow E$, blocked
- $A \rightarrow B \rightarrow C \leftarrow D \leftarrow F \rightarrow E$, blocked
- $A \rightarrow C \leftarrow B \leftarrow D \leftarrow E$, blocked
- $A \rightarrow C \leftarrow B \leftarrow D \leftarrow F \rightarrow E$, blocked
- $A \rightarrow C \leftarrow D \leftarrow E$, blocked
- $A \rightarrow C \leftarrow D \leftarrow F \rightarrow E$, blocked

Part (i): Conditional on $Z=\{C\}$, all the 8 blocked paths become open paths.
Recall that a collider can be 'opened' by conditioning on the node itself or on one of its descendants. Here, C is a descendant of B.

- $A \rightarrow B \leftarrow D \leftarrow E$, open
- $A \rightarrow B \leftarrow D \leftarrow F \rightarrow E$, open
- $A \rightarrow B \rightarrow C \leftarrow D \leftarrow E$, open
- $A \rightarrow B \rightarrow C \leftarrow D \leftarrow F \rightarrow E$, open
- $A \rightarrow C \leftarrow B \leftarrow D \leftarrow E$, open
- $A \rightarrow C \leftarrow B \leftarrow D \leftarrow F \rightarrow E$, open
- $A \rightarrow C \leftarrow D \leftarrow E$, open
- $A \rightarrow C \leftarrow D \leftarrow F \rightarrow E$, open

Part (j): For the given graph we have:

$$
P(A, B, C, D, E, F)=P(A) \cdot P(B \mid A, D) \cdot P(C \mid A, B, D) \cdot P(D \mid E, F) \cdot P(E \mid F) \cdot P(F)
$$

And the marginal distribution of D, E, and F is:

$$
\begin{array}{r}
P(D, E, F)=\sum_{a} \sum_{b} \sum_{c} P(A=a, B=b, C=c, D, E, F) \\
=\sum_{a} \sum_{b} \sum_{c} P(A=a) \cdot P(B=b \mid A=a, D) \cdot P(C=c \mid A=a, B=b, D) \cdot P(D \mid E, F) \cdot P(E \mid F) \cdot P(F) \\
=P(D \mid E, F) \cdot P(E \mid F) \cdot P(F) \sum_{a} \sum_{b} \sum_{c} P(A=a) \cdot P(B=b \mid A=a, D) \cdot P(C=c \mid A=a, B=b, D) \\
=P(D \mid E, F) \cdot P(E \mid F) \cdot P(F) \sum_{a} P(A=a) \sum_{b} P(B=b \mid A=a, D) \sum_{c} P(C=c \mid A=a, B=b, D) \\
=P(D \mid E, F) \cdot P(E \mid F) \cdot P(F)
\end{array}
$$

It follows:

$$
P(A, B, C \mid D, E, F)=\frac{P(A, B, C, D, E, F)}{P(D, E, F)}=P(A) \cdot P(B \mid A, D) \cdot P(C \mid A, B, D)
$$

And the expression on the right does not depend on E and F.

SOLUTION EXERCISE 2:

For notational convenience, identify: $\mathbf{G}_{\mathbf{1}}$ with $1, \mathbf{G}_{\mathbf{2}}$ with 2 , and $\mathbf{G}_{\mathbf{3}}$ with 3 .
The proposal probabilities can then be arranged in a 3-by-3 matrix \mathbf{Q}. The element $\mathbf{Q}_{i, j}$ is the probability for proposing a move from $\mathbf{G}_{\mathbf{i}}$ to $\mathbf{G}_{\mathbf{j}}$. The Metropolis-Hastings acceptance probability $\mathbf{A}_{i, j}$ for the move from $\mathbf{G}_{\mathbf{i}}$ to $\mathbf{G}_{\mathbf{j}}$ is given by:

$$
\mathbf{A}_{i, j}:=A\left(\mathbf{G}_{\mathbf{i}} \rightarrow \mathbf{G}_{\mathbf{j}}\right)=\min \left\{1, \frac{p\left(\operatorname{data} \mid \mathbf{G}_{\mathbf{j}}\right)}{p\left(\operatorname{data} \mid \mathbf{G}_{\mathbf{i}}\right)} \cdot \frac{p\left(\mathbf{G}_{\mathbf{j}}\right)}{p\left(\mathbf{G}_{\mathbf{i}}\right)} \cdot \frac{\mathbf{Q}_{j, i}}{\mathbf{Q}_{i, j}}\right\}
$$

Part (a) When only single edge additions and delitions are allowed, we have:

$$
\mathrm{Q}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

and the four required acceptance probabilities are:

$$
\begin{aligned}
& \mathbf{A}_{1,3}=\min \left\{1, \frac{a}{20 a} \cdot \frac{0.4}{0.4} \cdot \frac{0.5}{1}\right\}=\frac{1}{40}=0.025 \\
& \mathbf{A}_{2,3}=\min \left\{1, \frac{a}{20 a} \cdot \frac{0.4}{0.2} \cdot \frac{0.5}{1}\right\}=\frac{1}{20}=0.05 \\
& \mathbf{A}_{3,1}=\min \left\{1, \frac{20 a}{a} \cdot \frac{0.4}{0.4} \cdot \frac{1}{0.5}\right\}=1 \\
& \mathbf{A}_{3,2}=\min \left\{1, \frac{20 a}{a} \cdot \frac{0.2}{0.4} \cdot \frac{1}{0.5}\right\}=1
\end{aligned}
$$

For $i \neq j$ we have the transition probabilities: $\mathbf{T}_{i, j}=\mathbf{Q}_{i, j} \cdot \mathbf{A}_{i, j}$, and for the diagonal elements we then compute: $\mathbf{T}_{i, i}=1-\sum_{j \neq i} \mathbf{T}_{i, j} \quad(i=1,2,3)$. This way, we compute the elements of the transition matrix \mathbf{T} :

$$
\mathbf{T}=\left(\begin{array}{ccc}
0.975 & 0 & 0.025 \\
0 & 0.95 & 0.05 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

(b) When all three single edge operations are allowed, we have:

$$
\mathrm{Q}=\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

so that the Hastings-ratio is always equal to 1.
The six required acceptance probabilities are then:

$$
\begin{aligned}
& \mathbf{A}_{1,3}=\min \left\{1, \frac{a}{20 a} \cdot \frac{0.4}{0.4}\right\}=0.05 \\
& \mathbf{A}_{2,3}=\min \left\{1, \frac{a}{20 a} \cdot \frac{0.4}{0.2}\right\}=0.1 \\
& \mathbf{A}_{3,1}=\min \left\{1, \frac{20 a}{a} \cdot \frac{0.4}{0.4}\right\}=1 \\
& \mathbf{A}_{3,2}=\min \left\{1, \frac{20 a}{a} \cdot \frac{0.2}{0.4}\right\}=1 \\
& \mathbf{A}_{1,2}=\min \left\{1, \frac{20 a}{20 a} \cdot \frac{0.2}{0.4}\right\}=0.5 \\
& \mathbf{A}_{2,1}=\min \left\{1, \frac{20 a}{20 a} \cdot \frac{0.4}{0.2}\right\}=1
\end{aligned}
$$

Again we use for $i \neq j: \mathbf{T}_{i, j}=\mathbf{Q}_{i, j} \cdot \mathbf{A}_{i, j}$. And for $i=1,2,3: \mathbf{T}_{i, i}=1-\sum_{j \neq i} \mathbf{T}_{i, j}$.
The transition matrix \mathbf{T} is then:

$$
\mathbf{T}=\left(\begin{array}{ccc}
0.725 & 0.25 & 0.025 \\
0.5 & 0.45 & 0.05 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

(c) For both Markov Chains it is guaranteed that they will have the posterior distribution as stationary distribution. Therefore, we have to compute the posterior distribution.

Normalization constant:

$$
\begin{aligned}
P(\text { data }) & =\sum_{i=1}^{3} p\left(\text { data } \mid \mathbf{G}_{\mathbf{i}}\right) \cdot p\left(\mathbf{G}_{\mathbf{i}}\right) \\
& =20 a \cdot 0.4+20 a \cdot 0.2+a \cdot 0.4 \\
& =12.4 a
\end{aligned}
$$

For the posterior probabilities we use:

$$
P\left(\mathbf{G}_{\mathbf{i}} \mid \text { data }\right)=\frac{p\left(\text { data } \mid \mathbf{G}_{\mathbf{i}}\right) \cdot p\left(\mathbf{G}_{\mathbf{i}}\right)}{p(\text { data })}
$$

This way, we get the same stationary distribution for both Markov Chains, namely:

$$
\begin{aligned}
P\left(\mathbf{G}_{\mathbf{1}} \mid \text { data }\right) & =\frac{20 a \cdot 0.4}{12.4 a}=\frac{8}{12.4} \approx 0.645 \\
P\left(\mathbf{G}_{\mathbf{2}} \mid \text { data }\right) & =\frac{20 a \cdot 0.2}{12.4 a}=\frac{4}{12.4} \approx 0.323 \\
P\left(\mathbf{G}_{\mathbf{2}} \mid \text { data }\right) & =\frac{a \cdot 0.4}{12.4 a}=\frac{0.4}{12.4} \approx 0.032
\end{aligned}
$$

SOLUTION EXERCISE 3:

Part (a) Compute the marginal distributions:

- $X_{1}=2+\epsilon_{1}$ implies that $X_{1} \sim N(2,1)$
- $X_{2}=-X_{1}+\epsilon_{2}$ implies that $X_{2} \sim N(-2,2)$, as X_{1} and ϵ_{2} have independent Gaussian distributions.
- $X_{3}=2 X_{2}+\epsilon_{3}$ implies that $X_{3} \sim N(-4,9)$, as X_{2} and ϵ_{3} have independent Gaussian distributions.

The expectation vector is $(2,-2,-4)^{T}$. The diagonal elements of the covariance matrix are: $\Sigma_{1,1}=1, \Sigma_{2,2}=2$, and $\Sigma_{3,3}=9$. The non-diagonal elements of the covariance matrix are the covariances: $\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)(i \neq j)$.

$$
\begin{aligned}
\Sigma_{1,2} & =\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{1},-X_{1}+\epsilon_{2}\right)=\operatorname{Cov}\left(2+\epsilon_{1},-2-\epsilon_{1}+\epsilon_{2}\right)=\operatorname{Cov}\left(\epsilon_{1},-\epsilon_{1}\right) \\
& =-1 \\
\Sigma_{1,3} & =\operatorname{Cov}\left(X_{1}, X_{3}\right)=\operatorname{Cov}\left(X_{1}, 2 X_{2}+\epsilon_{3}\right)=\operatorname{Cov}\left(X_{1}, 2\left(-X_{1}+\epsilon_{2}\right)+\epsilon_{3}\right) \\
& =\operatorname{Cov}\left(X_{1},-2 X_{1}+2 \epsilon_{2}+\epsilon_{3}\right)=\operatorname{Cov}\left(X_{1},-2 X_{1}\right)=-2 \operatorname{Var}\left(X_{1}\right) \\
& =-2 \\
\Sigma_{2,3} & =\operatorname{Cov}\left(X_{2}, X_{3}\right)=\operatorname{Cov}\left(X_{2}, 2 X_{2}+\epsilon_{3}\right)=\operatorname{Cov}\left(X_{2}, 2 X_{2}\right)=2 \operatorname{Var}\left(X_{2}\right) \\
& =4
\end{aligned}
$$

Altogether, this yields

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right) \sim N\left(\left(\begin{array}{c}
2 \\
-2 \\
-4
\end{array}\right),\left(\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 2 & 4 \\
-2 & 4 & 9
\end{array}\right)\right)
$$

Part (b)

- The marginal distribution of X_{3} is: $X_{3} \sim N(-4,9)$, we can write that as:

$$
X_{3}=-4+\tilde{\epsilon_{3}} \quad \text { where } \quad \tilde{\epsilon_{3}} \sim N(0,9)
$$

- The conditional distribution of X_{2} given $X_{3}=a$, is:

$$
X_{2} \left\lvert\,\left(X_{3}=a\right) \sim N\left(-2+\frac{4}{9}(a+4),\left(1-\frac{16}{2 \cdot 9}\right) \cdot 2\right)=N\left(-\frac{2}{9}+\frac{4}{9} a, \frac{2}{9}\right)\right.
$$

Thus, we have:

$$
X_{2}=-\frac{2}{9}+\frac{4}{9} X_{3}+\tilde{\epsilon}_{2} \quad \text { where } \quad \tilde{\epsilon_{2}} \sim N\left(0, \frac{2}{9}\right)
$$

- The conditional distribution of X_{1} given $X_{2}=a$, is:

$$
X_{1} \left\lvert\,\left(X_{2}=a\right) \sim N\left(2+\frac{-1}{2}(a+2),\left(1-\frac{1}{1 \cdot 2}\right) \cdot 1\right)=N\left(1-\frac{1}{2} a, \frac{1}{2}\right)\right.
$$

Thus, we have:

$$
X_{1}=1-\frac{1}{2} X_{2}+\tilde{\epsilon}_{1} \quad \text { where } \quad \tilde{\epsilon_{1}} \sim N\left(0, \frac{1}{2}\right)
$$

$$
\begin{aligned}
& X_{3}=-4+\tilde{\epsilon_{3}} \\
& X_{2}=-\frac{2}{9}+\frac{4}{9} X_{3}+\tilde{\epsilon}_{2} \\
& X_{1}=1-\frac{1}{2} X_{2}+\tilde{\epsilon}_{1}
\end{aligned}
$$

where $\tilde{\epsilon_{3}} \sim N(0,9), \tilde{\epsilon_{2}} \sim N\left(0, \frac{2}{9}\right)$, and $\tilde{\epsilon_{1}} \sim N\left(0, \frac{1}{2}\right)$.

SOLUTION EXERCISE 4:

Part (a) For the DAG see Figure 5. The implied factorization is

$$
P\left(C_{1}, C_{2}, C_{3}, E_{1}, E_{2}, E_{3}\right)=P\left(C_{1}\right) \cdot P\left(C_{2} \mid C_{1}\right) \cdot P\left(C_{3} \mid C_{2}\right) \cdot P\left(E_{1} \mid C_{1}\right) \cdot P\left(E_{2} \mid C_{2}\right) \cdot P\left(E_{3} \mid C_{3}\right)
$$

Figure 5: Exercise 4(a): Graphical representation of the DAG.

Part (b)

- From the DAG it can be seen:

$$
P\left(E_{2}=1 \mid C_{1}=1, C_{2}=1, C_{3}=1, E_{1}=1, E_{3}=1\right)=P\left(E_{2}=1 \mid C_{2}=1\right)=0.1
$$

- From the DAG it can be seen:

$$
P\left(E_{2}=1 \mid C_{1}=1, C_{3}=1, E_{1}=1, E_{3}=1\right)=P\left(E_{2}=1 \mid C_{1}=1, C_{3}=1\right)
$$

and then

$$
\begin{aligned}
P\left(E_{2}=1 \mid C_{1}=1, C_{3}=1\right) & =\sum_{i=1}^{2} P\left(E_{2}=1, C_{2}=i \mid C_{1}=1, C_{3}=1\right) \\
& =\sum_{i=1}^{2} P\left(E_{2}=1 \mid C_{1}=1, C_{2}=i, C_{3}=1\right) \cdot P\left(C_{2}=i \mid C_{1}=1, C_{3}=1\right) \\
& =\sum_{i=1}^{2} P\left(E_{2}=1 \mid C_{2}=i\right) \cdot P\left(C_{2}=i \mid C_{1}=1, C_{3}=1\right) \\
& =0.1 \cdot \frac{0.8 \cdot 0.8}{0.8 \cdot 0.8+0.2 \cdot 0.3}+0.9 \cdot \frac{0.2 \cdot 0.3}{0.8 \cdot 0.8+0.2 \cdot 0.3} \\
& =0.1 \cdot \frac{0.64}{0.7}+0.9 \cdot \frac{0.06}{0.7} \approx 0.169
\end{aligned}
$$

In the last step we have used:

$$
\begin{aligned}
P\left(C_{2}=i \mid C_{1}=1, C_{3}=1\right) & =\frac{P\left(C_{2}=i, C_{1}=1, C_{3}=1\right)}{P\left(C_{1}=1, C_{3}=1\right)} \\
& =\frac{P\left(C_{3}=1 \mid C_{2}=i\right) \cdot P\left(C_{2}=i \mid C_{1}=1\right) \cdot P\left(C_{1}=1\right)}{\sum_{j=1}^{2} P\left(C_{2}=j, C_{1}=1, C_{3}=1\right)} \\
& =\frac{P\left(C_{3}=1 \mid C_{2}=i\right) \cdot P\left(C_{2}=i \mid C_{1}=1\right) \cdot P\left(C_{1}=1\right)}{\sum_{j=1}^{2} P\left(C_{3}=1 \mid C_{2}=j\right) \cdot P\left(C_{2}=j \mid C_{1}=1\right) \cdot P\left(C_{1}=1\right)} \\
& =\frac{P\left(C_{3}=1 \mid C_{2}=i\right) \cdot P\left(C_{2}=i \mid C_{1}=1\right)}{\sum_{j=1}^{2} P\left(C_{3}=1 \mid C_{2}=j\right) \cdot P\left(C_{2}=j \mid C_{1}=1\right)}
\end{aligned}
$$

